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GENERAL INSTABILITY CRITERION
OF LAMINAR VELOCITY DISTRIBUTIONS*

By W. Tollmion
SUMMARY

The present paper describes the results of a stabil-
ity investigation on symmetrical velocity profiles in a
channel and of bpoundary-layer profiles The limitation to
trese two most important types of proflles was, however,
not dve to any limitation of our mathematical method, The
effect of the friction was assumed -to be vanishing and did
not occur in the stability consideration so far as it had
not been resorted to for preparatory asymptotic consider-
ations. Proceeding on very general premises as regards
the form of the velocity distridbution, a proof was deduced
of the elementary theorem that velocity profiles with in-
flection points are unstable. Aside from this comprehen-
sive theorem, there were obtained fornulas of general va-
lidity for the investigated types of profiles which dis~-
closed certain information relating to wave length, wave
velocity, and amplification of the dangerous disturbances.

Dynamically, the profiles.with inflection points are
identified, according to boundary-layer theory, by the
existence of decelerating pressure gradients in such flows.
Profiles, to which this particular stability investigation
is inapplicable, may be encountered in slightly divergent
channcls or on the hydrodynamical rear surface (behind the
pressure minimum) of cylindrical bodies, particularly if
the body is short,. Thcy may also occur through superposi-
tion of the velocity distrivution without inflection point,
with a quasi-stationary vortex pattern, which can happen
in the first stages of the formation of turdvulence. The
proved effect is, undoudbtedly, of fundamental importance
for the creation of turbulence, '

*U"@min allgeneines 'riteriun der Instabilitat laminarer Ge-
schw1nd1gke1tsvertellungen Nachrlcﬁten von der Gesell-
schaft der Wissenschaften zu Gottingen (Mathematik), .vol.
I, no. 5, 1935, pp. 79-114.,
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INTRODUGTION "

The transition of Taminar flow, ‘with its clean, strat-
ified layers of flow tubes to. strongly intermingled, irreg-
ular turbulent flow, constitutes 6ne ¢f the most pressing
problems of modern hydrodynamics. It .ig certain that this
fundamental change in type of motlon of the fluid is at-
tributable to an instability in the laminar flow, for lam-
inar flows of themselves would always constitute possible
solutions of the hydrodynamic équations. The mathematical
derivation of the expected instability of laminar flow is,
as is known, beset with almost insurmountable difficulties.
While it is true- that the recent advances made on the sub-
ject are very promising, it is equally true that almost
every stability 1nvest1gat10n made heretofore, relates to
special laminar velocwty distributions. There seems to be
a palpable lack of general theorems in this field which
afford ready class1f1catlon of 1am1nar velocity profiles
accordlng to thelr stability.

The general 1nstab111ty criterion established herein-
after, discloses a frequent and powerful mechanism of for-
mation of turbulence.

The analysis is to proceed on the ba51s of two—dlmen—
sional velocity profiles, the velocities in this fundamen-
tal flow themselves to be very simply distributed; that is,
to be largely dependent only on the coordinate transverse
to the direction of flow., On this flow there are then su-
perposed disturbances which, according to the method of
small oscillations, are considered as small waves advanc—.
Ang in the direction 0of flow. . The disturbances themselves
shall also be two-dimensional*, while the effect of fric~
tion on the disturbances will be disregarded to a certain
degree. The problem posed is, When can disturbances with
1ncrea51ng amplltude be superp0sed on the basic flow?

. This roughly outlined problem is by no means new.
Back in 1880, Lord Rayleigh published an investigation

*According to a npte by H. B, Squire (Proceedlngs of the

Royal Society of London A, 142, p. 621, 1933), the inves-
tigation of the stability of flows depending only on one

coordinate may, if the disturbance is three—~-dimensional,

be simply reduced to the case of two-dimensional disturb-
ances.

3
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which above eVerything else gave ‘a readlly obtalnadle nec<
essary condition for instability. Subsequently, he again
and again reverted to this same problem ?reference 1), and
even other investigators, appreciating the importance of
his findings; applied themselves to the problem; but withe
out much success beyond the initial advance. ¥No sufficient
condition for instability has been set forth thus far.

I. THE DISTURBANCE EQUATION

Let U represent the speed o} the laminar fundamen~
tal flow parallel to coordinate x and dependent only on
the coordinate y at right angles to x. Being assumed
two-dimensional, the disturbance can be derived from a
stream function V¥ (x,y,t), t ©being the time. The veloc-
ity component of the disturbance in x direction is BW/ay,

in y direction, =~ g%n Thus the equation for the stream

function of the disturbance inclusive of the friction
terms - considering that U itself complies with the hy-
drodynamic cquations and with limitation to linear tecrms
in V¥, is:

QY oLy | FU 3y _ A
ot T U 3x dy® ox = vahsy (1)
2
where A is the Laplace operator 5§§- 5%§u and V 1is the

kinematic viscosity. The equation is the vortex equation
for the disturbance, which follows by elimination of the
pressure from the hydrodynamic equations. AV  is the neg-
ative vortex density of the disturbance, because AV =

g; - g; gﬁy glves the local time rate of changé, U a:c

the: transport of the dlsturbance turbulence by means of

the fundamental motion, = i—g g% the vortex transport in
the fundamental flow caused by the disturbance; v A AV
corresponds to the diffusion of the turbulence by friction.
The convective change in vortex density through the dis-
turbance motion itself is neglected as nonlinear in. view
of the assumed smallnes$ of the disturbances. -

Owing to the linearity of (1), the formation of ¢
from partial oscillations is permissible, which may be ex-
pressed as
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o(y) o(OxBY) (2)

that is, as waves traveling in direction x, In this equa-
tion the complex method of writing is employed; for phys-

ical application, the real part of the above expression is
to be selected. @ is a real constant and equal to 2mw/M,
where )\ is the wave length of the partial disturbance;

B may be complex equivalent to By + ifj. The real part

Br gives the cycle freguency of the disturbance, and the

imaginary part Bi the logarithmic increment, becoming

positive for amplified, and negative, for damped,oscilla-

tions. The real part ¢, of the guantity c = % " is the

wave velocity. Writing (2) in (1) gives the disturbance
equation for the considered partial oscillation:

(Um)(@Laz@)—tﬂ<P=—j§(¢W'—2¢3WWd*@) (3)

or, in nondimensional form (by measuring velocities in
terms of a characteristic velocity of the basic profile,
say, the maximum U, . 5, the length in terms of a charac-

teristic width b of the profile), as
(U-c) (@"-a® §) - U' @ = - 2 ("' - 20% 9+a® @) (4)

Here we took the liberty of employing the same notation
for the nondimensional quantities U, c, &, etc. as before.

.U b
R is the Reynolds FNumber “max o,

Now suppose the kinematic viscosity is very small or,
in more gemeral terms, that the Reyunolds Number R 1s very
largee. Then the experiment is suggested of suppressing the
friction terms altogether to obtain an insight into the be-
havior of the disturbance through a discussion of the fric-
tionless disturbance eguation

(U - c) (9" - a® ) - U" @ =0 ~(B)
and this is what Rayleigh aetually did. He stepped from

(4) to (5) without further discussion which, however, is
naturally necessary.
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II. ANALYTICAL PROPERTIES OF THE INTLGRAL OF THE

DISTURBANCE EQUATION AND EFFECT OF INTERNAL FRICTION

Starting with the analytlcal behavior of the solu-
tions of (5), it is necessary to refer to a'previous re-
port by the author (reference 2). We assume ¢ to be
purely real - that is, consider neutral oscillations, nei-
ther amplified nor damped. Now it happens, as we shall
see later, that at one point within the fluid the there-
existing fundamcntal velocity U Tbecomes equal to the
wave velocity ¢ of -the considered partial oscillation.
In other words, at this point a fluid particle always os-
cillates in the samec -disturbance phase. This point, called
the critical point, is designated with subscript o. Now
the origin of the y coordinate is placed at this criti-
cal point, and the direction of 'y is so defined that in
the vicinity U - ¢ >0 for y > 0; that is, so that U,

which is not to vanish, becomes positive. U 1is to be ca-
pable of expansion in power series around the critical
point to:

. U" .
U=c+ Uy y + —5— y 2 (6)
The critical point U, = ¢ represents a singular
point of (5). Then two linear, independent solutions of

(8) in the vicinity of the critical point can be repre-
sented in the following manner: With P, (¥) and P, (v)

as power series in y; A and a as constants determined
from (5), we have a fundamental system of solutions through

UH
91 =y Pa(y) =y + SﬁT’ y2 o+ ... (7)

n
P2 = P,(¥y) + A @1 log y =1+ ay® + ... + g, @y log ¥ ...
- (8)
Hereby it is to be established once for all that

log v for positive real y is purely real. When U"’
and likewise @, does not disappear in the critical poinat,
i.es, the transverse component of the distdrbance, there
results a 1ogar1thm1cally infinite (dlsturbance, velocity
in the x-direction, Whlcn is contrary to the smallness of
the disturbance velocity assumed in the method of small
oscillations. Regardléss of the magnitude of the Reynolds
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Numbery the friction must-be taken:' into account at .the
crltlcal point., The effect of the friction occurring in

a small strip (of the order-of magnitude of  (a R U'y)~/3)
consists, first, in a flattening of the x component of the
disturbance at the critical point -~ naturally it then re-
mains finite -~ and secondly, in the appearance ‘of a phase
discontinuity in the disturbances. Of the possible
branches of the log in (8) which would be mathematically
‘available for ‘the continunation of the solution toward neg-
ative ¥y (naturally outside of -the minute friction layer),
the writer has, on the basis of previous calculations
(reference 2), chosen one.which by means of the friction,
is physically possible, namely, the analytical continua-
tion of the logarithm by way of positive y through the
lower complex. semlplane to negative y. When ¢ 1is rep~-
resented by : ‘ :

" A :
1l ... +‘§TQ @l‘log y ' (9a)
becomes
U" 0 | -
l ... f ET; @l (logwly! - lﬁ) (9b)

when y 1is negative,

This transition substitution, however, signifies a
phase discontinuity because, if the real part of

@(y) el(c,'X Bt) is selected for representing the disturb-
ances, the <X component of the disturbance becomes
uyn _
ﬁTQ log ¥ ...) cos (ax - Bt) (10a)
O .

for p031t1ve ¥ in the vicinity of the critical point,
whereas -

U ’ gt
——9% log ’y, ...) cos (ax - Bt) + =2 1 sin (ax~Bt) (101b)
Ulo v . 'U'O A

for negative‘ Yo The result is s phase discontinuity which
does not disappear even for the limiting case QR = .

In the prcsent caee'We'aseumed .¢c purely real, .and
only a very small amplification (5i;> 0), that is, a
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small imaginary part in ¢ = g = cp -1 c35. The zero

point of ¥y "is placéd at the point U = ¢.» 1in accordance

with the previous definition. Attridbuting complex values
to y and defining U from the power series (6), we again
seek the singular point of (5) where the analytically con~
tinued U = ¢ = ¢cp + i c3. This critical point U = ¢

thus lies in the complex y plane slightly above the real

i c » : o
axis (by ﬁr—i , so that the real axis then has no longer
o
a singular point of (5).‘ Then at a sufficiently large

Cs --.1./3 N
Reynolds Number ﬁ%— >(a R U'y) >, no friction effect
° ‘ _
on the real axis needs to be considered. Now we introduce
an m coordinate shifted with respect to y along the

imaginary axis by placing the origin of m 1in the eritical

point U = c¢yp + i ¢35y which, for sufficiently small cj
gives
icy
= -t
y n+U,o o - (11)

(See fig. 1)

Denoting the value of U' and UY at U = c¢ with

Ut and U",., the solutions @ and @ in this case
c ¢ 1 2
are written as before:
U“c
= . 2 /
P n + 557 + ... ) (12a)
c ,
U‘"
: c
P, =1 + ...+ 5T ml(ﬂ) log m , (127D)
c

We only use the values of the singular solution
along the real axis y. TFor positive y, which is as-
sumed to be large compared to the small quantity c;/U',,
we have: '

_ . n
cpa = 1 + cee ,—,i_,ff-l_g_ cpl(y) log ¥y ) (13a)
Cc

while for negative y, it is:

Ull

9= 14 e+ 5 0,(5) (os fy] - M) (1ov)
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considering that the path,; along which the logarithm must
be analytlcally continued, lies below the singular point;
that is, the same transitional substitution-as for purely
real- ¢, - which was obtained through a boundary transition
from small friction.* This is of particular 'interest to ‘us
because the neutral. 050111at10ns are primarily con51dered
as a 11m1t1ng ‘case -of the ampllfled osclllatlons.

For small damplng, on the other hand the transition
is from : : ”

S ~ S o1 : - : ’
- | @a =1+ o + ETS.QL(y) log ¥ . (14a)
for y pos1t1ve to
Uﬂ* . .> N
D= o P T
o, =1 + een g7, cpl(y_). (log - jy| + im) (149)

for y negative.

Following the exclusion of the vicinity of the crit-
ical point through special considerations, we have in Q.
and ¢@_,, the solutions of the frictionless disturbance

equation, partlcular solutions of the complete disturbance
equation for very large o R.

The only remaining difficulty lies in the lowering of
the order of the differential equation By 2 during the
change from the complete to the frictionless disturbance
equation. The result was, of course, only two particular
solutions and consequently noncompliance to all boundary
conditionse. If the fluid passes between two walls, for
example, the tangential and normal component of the dig—
turbance velocity must disappear at both walls. Limited
to the frictionless disturbance equation (inclusive of the
necessary correction at the critical point), the stipula-
tion is, of course, confined to the disappearance of the
normal component only. 3ut, according to the findings of
various investigators (reference 3) the drop of the tan-
gential component of the disturbance to zero on the wall
at hlgh Reynolds Numbers actually takes place in an ox-

*Even in the case that cl/U'o,‘ while positive, is no

longer large compared to (a R U'O)—l/s, the boundary

transition to very large R affords the same rcsult when
the writer!s an%lygls (rcference 2 p. 27) ig repeatcd for
this cases =~ - : _

N
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tremély thin layer with the result that the effect of the
waill - frlctlon becomes consistently smaller.

Be51des thls-palr of asymptotic solutions deduced
from the frictionless disturbance equation, there exist
rapidly decreasing "boundary-layer-like solutions," the
inclusion of which in the frictionless solutions is neces-~
sary to insure complete compliance with the boundary con-
ditions. We shall give only the most elementary example
of such a boundary-layer-like solution. Designating the
distance from the wall toward the inside of the fluid T

and considering the particular case of ¢ having positive
real and imaginary part and being sufficiently great,

-1/3
( ﬁ?; §>!a R U, » U'y = value of TU! at wall Vg =
0 ), the boundary-layer-like solution, designated @5 then
becomes: :
] §";JE—”—"\/OLR'cyW
b, = e (15)

The addition of this inwardly rapidly decreasing solu-
tion necessary for compliance with the boundary condition
for the tangential component has but a minor effect on the
distribution of the amplitude of the disturbance and the
parameters & and ¢, as is readily proved. By suppress-
ing the explicit occurrence of the intermal friction in
first asymptotic apvroximation for very large Reynolds
Numbers, the determination of a critical R is foregone
in favor of the desired generalization of the results. On
the other hand, our investigation affords some particular
information about the type of dangerous disturbances and
constitutes for this reason a useful preliminary for .the
disturbance problem with explicitly occurring internal
friction, '

I1I. FORMULATION OF CHARACTERISTIC VALUE PROBLEM

FOR SYMMETRICAL VELOCITY PROFILES

Following these preparations, we can finally formu-
late our problema For the sake of simplicity, we first
agsume two-dimensional flow through channels as the fun-
damental flow. The particular velocity profiles shall, as
stated before, change very little in the direction of mo-
tion; that is, U = U(y), and the walls of the channel.
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shall be approximately parallel. Furthermore, the velocity
profiles shall be symmetrical with respect to the channel
axis. At the wall, of course, U = 0. Otherwise; the form
of the’ Drof;les ig very little restricted. Profiles with
an inflection point in. each half, such as may occur in
sllgntly divergent channels (fig. 2), are also included,
but not profiles for which U itself changes sign. This
1ncludes proflles with return flow as well as separatlon

prof 1les as a 11n1t1ng cage (4T _ o at the Wall\ At the

d
inflection p01nt of the 1nc1uded profiles (subscrlpt s),
let- U'g > 0, UMy< O, so. that. U" 1is positive between

the wall and point of inflection; and negative between the
inflection p01nt and the ccntor..

For these fundamental velocities, the following bound-
ary-value problem is to be solved: ' '

QU - @ Q- st @ =0 (16)

with the boundary conditions that the normal component of
"the disturbance, that is, .¢, "disappears at both walls.
The tran31t10nal suvstitution suffered by @ at a singular
point U = ¢ in the case of aneutral oscillations, has been
preV1ouslv establlsned by a transition to the limit of van-
ishing frictidén or disappearing amplification. The charac-
teristic-value problem here ig rather unusual. The real
paranmeter @ is assuned predetorwlned the gquest is for e
which occurs in nonlinear manner in the differential equa-
tion (18). Problems of this kind have been so little ex-
plored mathematlcallyt that the solution in guestion cannot
be baséd upon general existence theorems, The main task
will be to establish necessary, and at the same time suffi-
cient, conditions for TU(y), in order that complex charac-—
teristic values ¢ may exist, for it is readily seen that,
with a complex ¢ . as.characteristic value the conjugate
complex ¢ together with the conjugate complex character-
istic function also represents a solution. Our interest
centers on the solutions with amplification, for which ¢
hag a positive iraginary part.

‘Since U 'is‘symmetficai;  ® may. be reaﬁily_separated
into a symmetrical and an antisymmetrical part which, indi-~

vidually, uust satisfy the disturbance eguation. As a re-
sult, we need,cdnsider_only half of the y-zone, because
then we have. either ¢ =0 or ¢ =0 in the channel cen~

ter in addition to the boundary condition ® = 0 at one
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wall, depending on whether the distridution of the disturb-
ance amplitude. @ _.about.the central axis of the channel

is symmetrical or antlsymmetrical. This simplifies matters
guite considerably because the problen narrows down to one
51ngu1ar p01nt in a senichannel. '

The particularly important problem of stabllity of
boundary-layer profiles. is treated in a subsequent section,
“IV. RAYLEIGH'S EQUATIONS
His principal result,. summed up briefly, is a necessary
condition for the occurrence of amplified oscillations.

Writing the differential term on the left-hand side of
(16) - ‘

" - a® ¢ - =T ¢ = L(Q) (17)
- C

we form the integral term
2b —
S [ (o) ~ 9 L(9)] dyy (18)
o) \ Y.

between the boundaries of, the y-zone, the two channel walls.

2b =. channel breadth. ' Conjugate complex quantities are
overlined. Therefore,

(@) = 9" - a® @ - — e (17a)

whence ¢ and -5 shall vaﬁish, COnfbrming to the boundary
conditions at the zone boundariegs. The problem is to find

"when a nonvanishing imaginary part of -¢ 1is possible. On

this premise there is no singular point on the real y axis
so that the 1ntegra1 summarily gives:

2b "

- 21 ¢y f ~_;9*_~g ¢ P avy (19)
o0 [U. =l

This term then must vanish for solutions of the differen-
tial equation besides the boundary conditions. If U~
doeg not change sign, this is, however, not possidble for'a
c; other than zero, so that amplified oscillations are im—
possible except for profiles with'an inflection point. The

-condition, however, being only necessary, Rayleigh's theo-
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rem merely states that profiles without an inflection point
“reveal no -instability in the 'sense used here.¥ Any state—
ment as to the behavior of profiles witn an inflection
point 1is as yet 1mp0531b1e.

Another fact brought out by Lord Rayleigh is that, by
the eventually neutral oscillations (cy = 0, ¢ = ¢p), the
wave velocity ¢, of the partial oscillation must be equal
to the basic velocity at one point, thus ever assuring the
existence of a point with U - ¢ = 0 within the filuid. We
adduce a proof for this fact, which is somewhat more simple
than Rayleigh's. (See reference 1, vol. VI, 1913, p. 199;
also vol. I.)

Let us assume that c¢ > Upax (maximum value of U),
so that no singular point exists within the fluid. We com—
pare

to= ((g? _unr 16
¢ ( U - c ? (16)
with .
U"
fll —_ f 2
U-c (20)
that is, compare two solutions of (168) and (20) which dis-
appear at the wall (y, = 0). In addition, let @' = f!

- 'for yy = 0. Multiplication of (16) by f and (20) by @
followed by subtraction of the results and integration
starting at one wall gives:

T

£ Q' - £t m:=6f a® £ @ dyg (21)

So long as @ and f are positive, it follows:
Q' £l ' .
-a— > = d > f 2
G f and @ > (22)

after which, the solution of (20) becomes:

£=(c-0) J B (23)

v e s e mde it ) & el e —a = . e it e - m b Al s L em

*Many profiles without inflection points may, by applying
a correction explicitly containing the internal friction -
that is, in the second asymptotic approximation for very
large Reynolds Numbers, become unstable, as proved by cal-
culation on special velocity digtributions. The amplifi-
cation as a result of the small friction correction is, of
course, of lower order of magnitude than that found here.,
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f 1is therefore always positive and greater ‘than zero on
the other wall; consequently, @ cannot disappear on the

other wall, according to (22) or, in other words, it is
necessary that ¢ < Up,x+*

By the same argument, ¢ must be greater than the min~'
imum value of the fundamental velocity (zero hereafter),
The proof is the same, word for word, if we take

for f. It should be noted that for the proof of Rayleigh's
two formulas, the assumption of symmetry of U was not
utilized.,

Rayleigh, being unable to advance beyond these two
necessary conditions for amplified or neutral oscillations,
decided to approximate the steadily curved velocity profile
by a profile consisting of straight pieces (polygonal pro=-
file), in order to side-step the mathematical difficulties.
The transitional conditions to be fulfilled by ¢ at the
bendg of the profile were easily establigshed., They corre-
spond to the condition of egual normal component of the ve-~
locities and equal pressure on both sides of the bend. So
when Rayleigh** divided the profile into three strips of
constant vortex density (dU/dy = constant), for example,
he arrived at an ordinary guadratic equation for ¢ and
was able to show that in case of re-entrant corners, ampli-
fied oscillations are always present. But the rough approx-
imation of the velocity profile through a polygon suppresscs
essent fal parts of the process. The profiles treated here-
inafter are always curved.

V. EXISTENCE OF NEUTRAL CHARACTERISTIC OSQILLATIONS

We begin with the neutral oscillations which are possi-
ble in the case of a symmetrical channel profile, and which,
according to Rayleigh, insure a singular point ¢ =0 with-

*That ¢ < Upgx for the spgcial case of U'" <0 (pro-
files without an inflection point), is readily seéen by
forming the integral term

2b - B
Of [o (@) + ¢ L(®Y] dyw-

**See reference 1 (Vol. III, p. 17). 0. Tietjen!s discus
sion on boundary-layer profiles is similar,
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in the: zone. If '@ .is other than zero in this critical
point - say, equal to @, - the previously cited transi-
tional substitution (98) and (13), upon change from positive
to negative y, that is, on passage {from channel center to-

ward the wall, suddenly creates at ¢ an additive compo-
..U : o _
nent - ﬁ?g'i ™ @ Whereas ¢ remains continuous. It will
o -

be shown that such an abrupt increasc is impossible with a
neutral characteristic 0s0111at10n. To this end, we consid-
er the expression:

ap a9 |
T N (24)

Incidentally we add that (24) is proportional to the
time average of the product of both disturbance velocities;
that is, it is intimately connected with the momentum trans-
port of the disturbance. Since ¢ 1in the case of neutral
oscillations satisfies a differential eguation with real
coefficients, both ¢, and ¢¥; must individually satisfy

the differential equation. Consequently, (24) is constant
so long as no singular points occur in the dlfferentlal
equation., Asg a result of the cited sudden growth of Q'

on passing through the singular point U = ¢, (24) also in-
creases suddenly upon transition from greater to smaller y
through the singular point, and by an anmount

as is readily seen from a simple calculation of the behavior
of ¢ a&aad w' 2t the singular point. Since, according to
the boundary conditions, the term (24) vanishes at both the
center and the wall, there is no possibility for such a sud-
den increase. Consequently, either @ must be egual to O
at the singular point for the neutral characteristic oscil-
lations, i.c., only the reguvlar sclution @, supplies the
neutral characteristic oscillation, or else the singular
point wust drop out altogether, whence U", = 0; that is,
the phase veolocity must egual the fundamental velocity US
at the inflcetion point, provided, of course, that the
profile has one. '

Starting with the possibility of ¢ = 0 at the criti~
eal point, we coupare ‘
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oo (o 4 U |
wifh , . )
' gt o\ . . R -
| LI— PR A :
: o NU -~ -c_> £ - ‘ ;(29-)’

and comparc -those solﬁtioﬂsf ¢l of (18) with the,so1utioné
fy of (20), both of which disdappear at the eritical point
and whose power expans1onfutarts ‘at the critical point with
Ve Then, g

U - -
. o : .
Hultiplying (16) by fi, and (20) By ¢, followed By
integrating from the critical point (subscript o), gives

v .
f'9 9y - £, @'y = 'of, o f1 @y dy - (286)

f1 and @®i1 are, in accord with the assumptlon for nega-
tive y (from critical point toward ‘the Wall) negative at
first, and the term on the right-hand gide,’ positive. So
long as fl and P, are negatlve, therefore,

f' cpf .
3 1
o ——+  and < f (27)
£) o, P 1
Since f; is still negative at the wall (: - 5%:)
rather than passing through zero, @1 can so much less
diganpear at the wall unless ! ¢ = 0.  Then, of course, both

f; and ¢@; .disappear at the Wall at whlch the critical

.point then falls.

Applying the above argument 4m the case ¢ = 0 +to the
zone between wall (y, = O)» and center (yw = b), gives
for thils zone; o : : :

. : . v .
. Yo -
ey f1 o~ @y Y f az fl @1 de >0 (28)
. . S : 0 - , i _ S

¢ > Ty = 5o - (29)

U and @, are positive., Since

so long ds._frv=‘ 4
. ut, Uty
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in the center f!' = ﬁT“ =0, it follpws from (28)
: \ Uy o . WS
ﬁ?; @{l.>-o, that is, @', > 0 in the center. According-

1y, no o', corresponding to' a® >0 can satisfy the

boundary condition at the center, Thais condition thus com-~

pels a =0 at the center which, in conjunction with the

previous condition ¢ = 0 1leads to the regular solution

£ = 5?—' or with other notation, to @ = U, which remains
W . .

as the only one for a characteristic solution and actually

is suck a one, according to the properties of U,

As the only characterﬁétic osbillation existing in the
same manner for profiles with or without an inflectilon
point, we obtained tihe abnormal oscillation wita a = O,

¢ = 0; that is, with infinite wave length and vanishing
wave velocity and with the symmetrical amplitude distribdu-
tion @ = U. This solution itself has been known for a

long time; we prove here its singularity.

Yowever, fundamental velocity profiles with an inflec-
tion point may also have a neutral characteristic oscilla-
tion for which ¢ = Ug (fundamental velocity at the in-
flection point). Mathematlcally, the guestion is as to the
proof that the Sturm-Lionville formula

1
LA - ,___U....___.._ = 0
@ ? U - Ug
with the comditions @ = 0 for .y, =0 and @ =0 for
Yw = b, aside from the infinitely many positive character-

istic A values existing according to general theorems,
has also a negative characteristic value A = - a? (fig. 3).

The proof proceeds -from the solution ¢ = U - Ug for
a = 0, which has disappearin; tangent in the center.,. This
boundary condition in the center 1is malntained for the sgo-
lutions studied at o * O. The addition of «a® > 0 slows
up the drop of these solutions from the center toward the
wall, with the result that the nodal point @ = 0 of these
solutions, which for a = 0 1lies at the inflection point
of the fundamentsl velociiy, finally approaches the wall;
that is, we have the dedired characteristic oscillation
(fig. 4). The conclusion of the steady .dependence of nodal
point position on tlie parameter (a ) is, as known, made
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in proof of the oscillation theorem (reference 4). Since

the -parameter (here a®) may have only positive values, it
sumnarily follows that always one, and only one, such sym-—
metrical disturbance flow is possible, because characteris—
tic oscillations with several nodes ¢ = 0 can exist only
for a negative parameter. The existence of the characteris—
tic solution could, moreover, also be proved by repeated
application of our previous deduction., We call this charac~
teristic solution @4 and put its parameters a = ag, c = Uge

Any doudt as to the possible occurrence of an antisym-
metrical disturbance flow for ¢ = Ug with @ = O in the

center, is refuted in a subsequent section.

Lord Rayleigh himself had pointed to another possible

solution for U" = 0, According to the frictionless dis—
turbance equation (5), it might be conjectured that at such
a point a solution U = ¢ existed; that is, a disturbance
confined only to the critieal layer U = ¢ itself. Consid-

ering the high values of the differential guotients of ¢

in such an oscillation, the friction must in any event be

taken into consideration. Since L. Hopf (reference 3) has
proved that these oscillationsg are damped, they are merely
mentioned.

VI. EXISTENCE OF AMPLIFIED CHARACTERISTIC OSCILLATIONS

Their existence under certain conditions will be proved
by considering solutions adjoining the previously deduced
neutral characteristic solutions. Our method is vaguely
reminiscent of the well-known perturbation theory of the
characteristic values (reference 5) with, however, substan-
tial modifications imposed by the prevalent singularities.
Rather than proceeding, as customary, from the known to the
hypothetical solution, we attempt to double back from the
hypothetical {amplified) solution to the known {neutral)
characteristic solution.

Let @5 represent the neutral characteristic solution
and ¢y, Opn 1its parameters, the parameters c (complex)

-and o .being assumed. One solution @ is to satisfy the

disturbance equation with these parameters without, however,
being a characteristic solution, whereas Q1 is to comply
with a boundary condition, say, that on the wall. In this
manner @p 1is defined up to one factor; c, a, and @y are
subsequently appropriately determined as being adjacent to
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Cns» Ons and Pn..
| Subtractlng.the dlfferentlal equatlon for @n;};f
-~ (U = en) (m" . a?n;wn)-f-v".@n;=.b T s0)
’from that for @I: ' | ﬂ | , | N _ \A
" LU e) (@ - o @p) - U g =0 - o (51)
gives o L - B e . |
(v - ) {(cpI - o) = 02 (9 - e} - U (op - 9y)

o L - LN (32)
= (c - Cn.)(P:"-'.n + -{(U - c) o ~ .::(U - cﬁ)'._a,zn} Py

or : . . ‘ . s . .
(@1 = Pp)" = a® (@7 -~ @) - 5 wn).: g (33)
with B _ oo _ A _
T C - Cnp- s U= ¢ : T ‘ : :
g = gij“gg.@"n "ﬁi:“gg a%n @n + 0F @p (34)

g contains. only @n - and the alsturbance parameters. Hav-
ing assumed ¢ as complex, we have in reality no zero
point of U - ¢, that is, no singular point in the differ-
~ential equation for @1 - Pp.. Be it noted that the coeffi-
cients of the homogeneous part @1 - @pn - of: (33) correspond
to those of the dif ferentlal equatlon for - Q7. ’
Then,With @II as a linear solutlon of
1"

- - Ul = ‘ ]
@" o® @. TS ? 0 _ (31)

independent of @3, we can write @7 - ¢, in form of
o Tw , Ty o

Pp = Pn =91/ 8 9Prp dyy - P77 J £ 1 dyy + C ¢ (35)
. " (ol FR ) et
with integration constant ¢ vln which, by normallzlng

%1 CPIT—kPTCPII-:-l

The integral is to extend from the'wall as subscript w

.y
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indicates. The problem then reduces to finding the neces—
sary and sufficient condition which satisfies the boundary

'condltion at the center: throagh ¢I' that is, ¢y =0 or

else @' 1 - ¢ n= 0. With b as the distance of the wall
from the channel center, we have for y. = b, according. to
’ ' ' .‘ b - - |

To deduce a necessary conditlon, 1t is assumed that

ot 7= 0 in the center, so that’ [oM T Yecomes. other than

zero in view of the ‘presumed linear independence of Qr.
Then, of course, it follows" that ’ '

b
S e dyg =0 o (37)
in accdrdahée to (38). ' This condltlon, sufficient since
for yy = b, accordlng to (36) '
4 , 5 . |
Sy [1=TC - f _g'@IIdew]-= o : (38)
: o , ]
as well as ’
. b ‘ ! .
o1 [ - ¢ =~/ & 911 dygl = 0q (39)
. 0 " . H .. L R

according to (35).

But ¢, is not zero in the center because there
@'y = 0, whence the term in the brackets mus: likewise be
other than zero. Consequent;y,,,@11.= 0. in (38).

Now we prove the existence of solutions with amplifica-
tion for profiles with inflection p01nts by means of (37)
for it péermits the calculation: of ¢ (at:least near Cp)
as function of o (mear ay). S Lo T -

-We first consider the wicinity . of o¢n = U, cq = an = O
The soluticn @ adjacent to this neutral characteristic
solution. of. the disturbance equation with small parameters
c (assumed complex and. with p051t1ve imaginary part) and
a@ (real) is estabdlished through br = 0 at” the wall and’

the further condition that the derlvatlve of @I. at the

_wall equals that of  Qpg .that is, -@:I.? U’ f for. yg = O.
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In this case

g=g oV e T | (40)
and : ' 5 ) -
g Py = ¢ CP"I + a® (U - C) Pr (4_1)

by'ﬁaving recourse to the differential equation for @g.

Accordingly, the condition
' b
f [C (p"I + Cf,z (U - C) CPI] dyW = 0 (4:2)
. o - .
must be met for a characteristic solution, according to
(37) .*

The evaluation of (42) proceeds on the derivations of
several approximate representations ¢r. It does not suf-
fice to approach @1 through ¢,, Dbecause the operation
must be effected in the dangerous proximity of a singulari-
ty. We again expand according to m from the singular

point U = c¢c = ¢cp + 1 c3, so that m 1is approximately

equal to y - 3%1. As before, subscript ¢ denotes the
Ule .

values of TU', etc. at the singular point; c, 1s thosen

positive. The expansion 1s then made for a range extending

on the one hand, from the singular point to the wall, where
. un 3

m approximates - - - Z.e % and on the other hamnd, to
o ' Ut 2Ut,°®

a small positive y = ¢; the latter (e) to be chosen so as

to make €7 small relative to —z7——, whereas € 1is large
Cs . . A
relative to Tﬁ%jw’ Here as well as later, it is simply as-
c
sumed that ¢35 ©proves of smaller order of magnitude** than
cpe Accordingly, we assume € as being about egual to

3/4
1

c
; @1 is to equal TUly at the wall. The expan-

i
Ut,

*Mhig condition (42) can also be proved direct with @'I =
0 in the center by substituting (U-c)@r;-U'@y for
a®(U-c)@r according to (31). '

**Thig relationship between cy and cj is already indicated
by the fact that the roughest approximation for @7, namely,

U, gives an expression for c, according to the integral
equation (42), dbut not for cjy.
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sion, starting from the singular point, gives

B

U"qc_ gh 2 c o
Ufe 2U', 2Tty

Uly = Uy -

The development of @1 with two unknown coefficients A and
B is:
U _ Ul'l

(p = +"‘—Q“' 2...)’*‘ P ‘—-"‘" 0l'>
=4 (n tggig 0t B (1...+ S log m

By determining A and B from the initial conditions, we ob-
tain for @7 in the cited zone uwp to terms of the approxi-

mate order of c,°:

o1 ={1- ¢ -———g—[log< —-—> + 1]} (viem+ ~——ﬂ )

U"
+ (c - c? Gng) <1 + ——¢ n log m (43)

The imaginary part of 1log ~'ﬁ%_;> is =. 1 7, while
c Cs
that of logm at y = € 1is equal to 1 Eﬁ%— which, ac-
c
cording to the definition of ¢ is very small.

The region of y = ¢ wup to the channel center yy = D
requires a representation of the maximum imaginary part in

¢i. Since ¢ » T%'W we can for this range, develop
c .
U! 2> —
W e [ ——=
o - (Gt at)e =0

according to c¢3, which affords as a first approximation:

[{] 1"
U + U

Q" -

> i ci+a9Jcp'=o

Wow it is possible to set up a fundamental ‘system of
solutions, one of which satisfies the initial condition

3

=1, ' =0 for y = €, the other ® =0, ¢ =1. 1In
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the absence of singularities thé development may be effect=
ed according to pargmeters i cy and 02, and it is found
that in this fundamental system the first imaginary compo-
nents go with «cj5. The indicated development of ¢ starts
with

9 = Q(y) + 1 ¢y Qa(y) + a® Qa(y)

where the Q has real, restricted values which are not de-
pendent on parameters c¢5 and a®. » Q* may be explicitly
expressed, according to the early statements about (20).
By suitabdbly combining these fundamental solutions, the
joining to (43) may be effected for y = €. Here again,

c;y is to be of lower order of magnitude than cp. Remem—
bering the remark about (43), according to which the imagi~

nary part of log 59—;> equals - 1 i, while that of 1log
n disappears for: y e , the maximum imaginary part* in

P1 is easily obtalned as

ur, '
Cr E——g im uly) N (44)

Now (42) can be evaluated: @7 changes for c¢c = a =0
steadily to U. With this rough approximation (42) glves
the equation for ¢, to the first approximation:
. b B
- cp Uty + cp @' 1(0) + aad/ U® dyy = O

If, however, the condition of orthogonaiity is com-

plied with, then @'7(d) = 0, whence
b

that is, actually positive, which proves the assumption
about cp as being in accord with the condition of ortho-
gonality. To define c¢3; demands closer approximations

*The statement about ¢ can also be confirmed insofar as

an explicit expression for ¢ 'can Dbe given, at least for
a =0, that is, Qp =~ Uly c(U—c) f ——————— as is read-

ily seen when written in the dlfferentlal equatlon.
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(43) or (44)Lfor ,@I- There iSwobtained-

‘

ey = aP oy g J U dyy = oy Epm (45)
L Ut g Towg .

Eqﬁations (45) and (46) contain the neceséary and at the

-same time sufficient conditions for the existeénce of ampli-

fied characteristic solutions. It remains to be established
whether these conditions conflict with the assumptions rela-
tive to the disturbance parameter made incidental to @g.

As to (45), this bas been proved; as to . (46), only the fact
that ¢y > 0 was utilized in the representation of @
should be noted. Equation (46) can be complied with only
when the profiles have an inflection point, where TU'y > 0.
For the others, U"'y < 0, so that we obtain a contradic-.
tion in accordance with the first formula of Rayleigh. And,
as the assumptions for c¢p and c3y are also confirmed,

the existence of amplified characteristic oscillations in
the case of proflles with inflection points is proved. It
is seen that ¢y increases so much more with Cy as, un-
der otherwise identical conditions, U" 1is greater at the
wall .

Although this very fact proves the instability of such
profiles, it should be very instructive to construct a
neighboring solution with amplification for the neutral

‘characteristic solution ¢4 with the parameters ¢, = Ug

and OQn = 0ge Again denoting this particular solution by
?; and the parameters near Ug and og by ¢, &, we put

c - Ug = A0c = Acyp + 1 ¢y
' 3 (47)
a® - a®% = Aa® '
ci again being assumed positive, so that (37) suitadbly -
transformed with the aid of the differential equation for
Pg, Tbecomes:’ ‘ ’

b o}

A c UM Av. + AR © a = 0 48
J (0= o) (U= 03 Ps 01 4y _of o Ps 91 dyw o (. )

Now @y 1is visualized aslnormalizedﬂ so that it is ex-
actly equal to 1 at the inflection point. If y 1is the co=-
ordinate starting at this point, the development of Qg
starts with 1 4+ ky where Lk 1is constant, which need not
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be known further. We may regard $I as determined by the

fact that it becomes 1 at the singular point U, = c¢c =
Ug + A ep + 1 ¢35 and satisfies the boundary condition
7 = 0. TWe again effect the development about the singular
point in terms of m = y - Q%., that is, at first, for an
o e . Cam L _
interval =~ € £y = + €, where € » %%—., but €2 <L %%—l,
obtainable by choosing € = _%%— KD
o o : . c
' The development of @3, according to m starts with
: ch : . - ’
P = 1+ 5Tf-ﬂ logm + ki1 m - (49)
while ' ' S
@g = 1 + . Ac 4ok n : (50)
. U’c . -

Owing to the steady transition from"CpI into @4 for van-
i shing Ac and Acd®, the gonstanﬁs k and k;, determined
by the condition at the wall, differ Dbut little. Then the
integration, according to (48) for the interval of y be-
tween -~ € and + €, gives for the first integral in (48)
(limited to terms at least linear in Ac):

‘Unc : : '
MR o : (51)
U'e N _ , .
or, when considering that U", throﬁgh'developmenﬁ from
the inflection point y, = s Dbecomes equal to Ulsde |
Utg

where U™y 1is assumed negative and U'g positive.

THe . i)
_ UMty ey m UMy
' 2

mr 1
Ul g Uty

Acy m L (52)

Outside of this interval @1 may again be developed,

*¢ is, on the one hand, chosen so small that a few terms-

of a development of @1 according to m suffices for
’ ™
vyl < ¢, that (U - U | Ac for |yl > ¢ and 5—%—;

and @1 can be developed according to the parameter Ac.
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according to the parameters ‘Ac and Ad®. .The first ap=- .

proximation- (linear in Ac).for the missing constituent of
the first integral of (48) is obtained by substituting ?

for @I in thig zone:

A Tc U’ — 0s° dye F f~D ul — ’3 d' } (5;3)»
(o] : ——— e e e e
L W-r” T T Tt (U Uy e Bwp 2

From the determination of €, it follows that the tran-
sition €—>0 <can be effected (up to terms which, like ¢,
disappear) within the brackets without changing the values
We put:

. .

S~€ un R g

B=limq [ == 0& ¥y + J =ty 0 dyw} (54)
€=0 0 (U" S) s+€ (U" s)

E contains only known guantities and remains finite, because
the constituents which become infinite, cancel out. Conse~
quently,
Ullls . - b 2 . UnlS -
EAc, - TE cimt+ia ({ Pq dyw+1{ciE+ T nLSCr}.=o (55)
s s :

The explicit interpretation of this relation requires

b .
the knowledge of E and Jf @4° dyy, which would call for

the calculation of the pr%ven neutral characteristic solu-
tion @y . But the existence of a neighboring characteris-
tic oscillation is readily apparent without it. To illus-
trate, assume B <« O as can be proved (section VIII)., Then
the imaginary part of (55) gives:

Since c¢3 according to assumption is to be positivéy
and U"y negative, A ¢y should in this case, be negative.
Writing ¢35 according to (56) in the real part of (55)
glves:

U2 2 Ao® P ' 3
Bop {1+ =% =)= - 2= [ o ayw (57)
s B B _ _ .

which proves that a satisfactory solution of the necessary
and sufficient condition for amplified characteristic os~-
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cillations is possible as soon as Aa® is chosen negative.
It can also be proved that for E = 0, in which A ¢y =0
or E >0, an amplified characteristic oscillation would
exist as soon as A a® is negative. Continuation of the
characteristic solutions over « in the zone around Qg4

is therefore only possible in one direction, namely, for
decreasing «, where E should also have the same sign.
The order of magnitude of Cis according to the above for-
mulas is at least as great as that of A cp. The result is
the start of the development of function c(a) at two
points, namely, for o =0 and a= @ in general formu~
las.

]

VII. EQUILIBRIUM OF BOUNDARY-LAYER PROFILES

A particularly important case is now analyzed as to
stability. TIdealized to a certain extent to suit our pur~
poscs, the boundary-layer profiles are to be so defined that
the velocity U rises from O at the wall to Up,x at

distance &, and then remains constant to infinity (fig. 5).
At ygy = 6, a discontinuity in U" may be permitted, for,
integration of the differential equation for @ over a

small interval around ygi = §, shows that nevertheless, in
addition to ¢, @f also must remain continuous at this
point.

Now a fundamental gystem of ¢ solutions can be set
up for the zone U = constant = Up,x., namely, ¢ = e @¥w
and @ = et%¥w, 4in which, when « 1is positive, the second
may not occur because of its infinite growth in a charac-
teristic oscillation. The characteristic function in the
zone from ygy = 8 %o Yy, = o Dbehaves like e"Ww, oQur
analysis shall be restricted to the zone O B Vw < 8§, 80 as
to rule out the infinitely remote point, which is an essen-
tial singular point of the differential equation. Then the
characteristic solution, aside from ©® = Q0 at the wall
(yw = 0), must satisfy the other boundary condition

of + a9 =0 for Vg = 8 (53)

in order to make the joining with the cited solution form
e—QyW i
, possible.

The neutral characteristic solutions are established
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very similarly to those for profiles in the .channel, and

_from an analogous conclusion it follows that O £ ¢ = Unax

and that as. far as. proflles ‘without an inflectiofi ‘point
are concerned, only the neutral characteristic solution
=7U, ¢c=0a =0 exists. ITts constructioh proceeds from
the solution of tHe differential equation for c = Ug, @ =

O, which satisfies the boundary condition for. yg = 8.
But this solution itself is simply U - Ug. Changing to
a® >0 while preserving the value of P at yy =8 Dby

normalizing, the ¢ wvalue is increased twofold: first, as

an increase of ¢ for yy = 8§ corresponding to the bound-
ary condition @' = - a @ wupon advance to smaller y,; sec-
ond, as effect of a on the coefficients of the differen-
tial eguation, as known from the channel profiles. Finally,
when O Dbecomes large enough, ¢ ceases to be negative at
the wall (fig. 6). For this « = Og, where ¢ = 0 at the
wall, the characteristic solution Qg exists.

Now we construct their neighboring amplified character—~
istic solutions. The previous formulas for the channel pro-
file are in any case in the neighborhood of ¢, = U, ¢ =
@& = 0 not to be transferred by simple 1limit process to the
boundary-~layer profiles, because there it gave, for in-
stance,

o2 b
= = [ UP ayy (45)
Ulw o

Cr
so that for boundary-layer profiles, where b goes to in-
fianity, the integral would become infinite. For this rea-
son, a new integral condition is derived for the exigtence
of an adjacent characteristic solution, the analysis again
being restricted to the finite zone 0= y S < 3.

Subtracting the differential equation for the neutral
characteristic solution ¢, from that for the adjacent so-
lution @1, we obtain

(91 - )" = 6®(97 = @) = 5T— (91 - ¢n) = &  (33)

with . ) o |
g = %—:———%‘—"‘- Py - %»}—2—5 a2y Qp +‘oc2 Pn - (34)
It is simplest to derive a necessary condition that ¢I be
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a characteristic solutlon, as follows: X The differentiagl
equation for @I : : o :

is ertten symbollcally L(¢I) = 0, so that the above equa-
tion for Q1 = Op becomes

L(CPI = Cpn)

Next we formulate

i {or 100 = @) - (9 - @) T(ep) } vy
o] ‘ . - ‘

d Py d 9
O S Nt
ay dyA.yW=5
which with con31deratlon to (58) gives the necessary condi-
" tiomn:
: 5 |
J 91 & dyy = (an - a) (97 9u) -5 (60)
o Tw=

That this condition is also sufficient, is seen in similar
fashion as in section VI. We form

9’1 - 9'y + alor - Op)
. 8 , 8
=(¢'s+a P1) S g Py Aye- (@' p1ra 911) S 8 91 dyytC(9'ita @)
. 0 o]

' - ' (61)
for @1 - Py at y, = 8 according to (35).

Considering the condition (80) looked upon as fulfilled,

and Q71 expressed as.

or ®'r1 - 9’1 917 =~ 1

the right-hand side becomes:

S
(9*1 + a 91) f g @II Ayg + C(@!I + a 9p) - (a - ap) @y

+(CPI+0«\PI) (CX,-—(I)CPIICPn

and the whole equatlon (ol) may be ertten as:
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(o' 1+aor) {1—0 - f g cpu dyw+(ocn-oc) cpuqvn}-c Pl atanPn=0 (62)

The multlplier of w I + a ¢I on the left side is differ-
ent from O, because according to (35) and. (60), 1t is:

. 8 ) . o ‘
Px {1 -0 -/ & %y dyy + (o - @) Opp ?n}A=;¢h (63)

for yy = &, and 9n(8) * 0; otherwise @'y(8) = 0 for
Yy = &, that is, @n would have to disappear.*  Conse-

guently, the bracketed term does not disappear and
¢'I + a 97 = 0 for yg = 8§, according to (62)

The determination of @; near Q.= U, ¢=a =0 as
before, through @y = 0 and @'I = Uy at the wall, is

-followed by the evaluation of the new integral condition -

(60):

‘5 1 ) . ‘

J {c o'y + a® (U - ¢) ¢I}~dyw = (a, - &) (91 Pn)_ _

o T =5
as
- cp Uly = = a Upax"
or U -
ey = ¢ max - _ (54)

A comparison of this formula with the previous one re-

'veals another power of o at the limiting transition from

channel to boundary-layer profiles. The amplification is
(deductions -as. before, esp601a11y with formula (44))

" 2 11
= E__EE_I_J__E muU 2 E_L..E_V_V_ (85)
c 1 - U ' ws ma X U 1 Wz

The relationship existing between both formulas for

.y (45) and (64) becomes so much clearer when comparing

symmetrical channel profiles, which are to have a variable
U from yg = to yw =8, but constant U = Umax oOvVer

a greater length 2b, around the center, with tne boundary-

-layer profiles (compare third profile in fig. 2). @1 is

for the channel profile in the- vicinity of constant U ap-
prox1mately'

*That @n(8) -+ O is also. readlly apparent from the cited.
construction of the neutral.characteristic solutions.
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(1 48) -0y 4 ~a(by+8) toyw
nax ' eOb1 4 o=@b1
A b ( .

The constituent ./ o® U @7 dyy in (42) becomes equal
to o Upgx® tanh « b15 and approaches a? Umax> bi for
small a by according to (45), and approaches « Upgyx®
for large @ by in accordance with (64). The validity of
(45) is therefore contingent upon a b; <<€ 1, which for
boundary-layer profiles, where b,—>c is impossible, no
matter how small o may bYe, in which case formula (64)

holds for Copoe

As to the adjacent amplified oscillation for Py, o =
g, ¢ = Ug, suffice it to state that (56) and (57) are
preserved; only the there—existing integral needs to be ex-
tended to Db = oo,

VIII. ILLUSTRATIVE EXAMPLES

These examples treat the neutral characteristic solu=

tions (g, previously referred to, as well as the formulas
for wave velocity and amplification in the vicianity of a =
0 and o = Qg. First we assume sinusoidal chanunel pro-

files. Thus,

U= Ug + (Upyx = Ug) sin (T 5 (83)

The velocity Ug at the inflecticn point 1s then cdnnebted
with s, the distance of the inflection point from the
wall, through the relation:

. s ™\ s s ™ ~
US <1 + sin :D—":*“S—‘ 5)-— Umax s1in g"‘:_‘s‘ é“ (07)
which follows from U = 0 for Yy = O, whecnce the differ—-
ential equation for a characteristlic solution at c¢ = Ug
runs as follows: '
C . 1 e
v P~ a® + = 9 =0 (68
. e (b - s) 4 )

To allow at the same time for the boundary condition
at the wall, we put @ = sin PIw; p is determined from
. % A ‘ -
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the boundary condition for yg = b. TFor «a, the differen-
“tial equation gives: = - o :1 : - :
. . o :
@ = X = T - ot (69)

Since 0 = s < 3 and’ a® is always positive, p may as-

sume only the wvalue n/z in the center, according to the
boundary condition @' = 0, but not the m value, corre-
sponding to @ = 0. The result is therefore the character-
istic function ’

Py = - (70)

and

2 2 1 »
T O G (71)

o'l
-

for s = h, ab = 0.559 m, for example (fig. 7).

For the amplified adjacent solutions with this pro-
file in the vicinity of c¢p =0, a = 0:

cy = 0,462 o B° Uy,
c.2 - Db c s5/2
cy = 7.59 E—, Elm— = 11,17 ——3—>4 (72)
max Umax max
in the vicinity of ¢, = Ug = 07414 Unaxs @b = 0.559 m

Cy = 0.061 Cf.g b2 Umax + 0.226 Umax

00194 Umax bt 0.468 cr

cy =
. C
Bid _ 0.336 — 0.821 5—1- (73)
Umax .max

where ab must be smaller than 0.559 1re

We proceed now to the sinusoidal boundary-layer pro-
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files, for which
Ty = S T
U= Ug + (Upax - Ug) sin —g———— — for y, =
- 8 2 .

A
o

(74)

v

U =1 8

nax for ¥y

The differential equation for @ in the zone 0 =
8§ runs as follows: ‘

A

‘ ' 2 -
cp" - az (p + —-——-]—'——-——- T.I._Cp =0 ' (75)

N
(& - s) 4
with the boundary conditions:
¢ =0 for y, =20

' + ap=0 for y, =&

Py
o was assumed positive. By making ¢ = sin —gﬂu the
other boundary condition”gives:
a == 1p cot p (76)"

The differential eguation furnishes the further relation:

1 - 8 2 sin p
8
We consider only positive values of p, as .negative p
would give no new characteristic funetion. In view of
equation (77), sin p > 0. Therefore,
_P .z
sin p .
and, since
T < ._._.]:..___ s < 7
27 1 . 82
)

p must be smaller than  m, according to (77). As o 1is
to be positive, p = m/2 according to (76). The solution
of the transcéndental equation (77) for several specific
cases, follows:
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"For s =0, p =:gg, a =0

for & = Q’ - . 658 l]_-_é_é , Q. =V ."356 .
9; s % P 0.6 Wﬁ(h 180 17 8 xQ gl (78)
tor s =8, p = owrer (= 28 0) as - o.evs n
for  §.iA2’ P —$9{737.n & 180-.7 ) . ad = 0,675 11
The characteristic function becomes
oy
CPS = —".——"‘:Eg— for (0] g YW £ 8
gsin = :
) .
(79)
sin p od -O¥w >
P = -2 £ 2
5 BEY e or Yo = 8
sin -
8 J
_ For a closer descrlptlon of the shape of @, we
point to the pos1t10n of the maximum at Iw = §L° Figure
b
8 shows - @S plotted for s =_%.
For the boundary-layer profile with s = % near
¢y = 0, @ =0, . the amplified neighboring solutions are:
cp = 1,025 a § Umax
cy = 7.59 —31— Plﬁ = 7.41 (ﬁ““) ' (80)
. max .Uma . max : .
in the vicinity of ¢, = Uy = 0.414 Umax, ‘a8 = 0,356 m
; cp = 0.082 a?'az Umax + 0.312 Umax
¢y = 04250 Upgx - 0.604 o, | o (81)
s c. . ' |
P18 _ 0.280 - 0.675 _F:
Unax Unax

where 0§ must be smaller than 0.356 7T
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Figures 9 and 10 show ¢, versus a and P35 versus
cy according to (72), (73), (80), and (81). The start
and finish of the curves are shown as heavy lines connect-
ed by dashes after interpolation, so as to give an idea of
the probable amplification. No conclusions are drawn
therefrom., If it is preferred to obtain the entire distri-
bution of the cited curves the attempt at generally appli-
cable formulas must be foregone in favor of a calculation
fitting the particular -case.. And that itself is easy,
once the difficult problem of the existence has been ex-
plained,

Translation by J. Vanrnier,
Fational Advisory Committee
for Aeronautics
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